
FA3ST Service

Fraunhofer IOSB

Apr 23, 2024

BASICS

1 Implemented AAS Specifications 3

2 Features 5
2.1 Getting Started . 5
2.2 Installation . 6
2.3 Usage . 8
2.4 Configuration . 10
2.5 Endpoint . 14
2.6 AssetConnection . 21
2.7 Persistence . 34
2.8 FileStorage . 36
2.9 MessageBus . 38
2.10 Release Notes . 42
2.11 About the Project . 48
2.12 Contributing . 49
2.13 Recommended Documents/Links . 50

i

ii

FA3ST Service

The Fraunhofer Advanced Asset Administration Shell Tools (FA3ST) Service enables creation of Digital Twins (DTs)
in accordance to the Asset Administration Shell (AAS) specification . FA3ST Service is a software that, when started,
offers one or more AAS-compliant APIs to interact with a DT. Optionally, it can be started given an existing AAS
model file and/or a configuration file. FA3ST Service also allows synchronizing a DT with the asset(s) it represent via
so-called AssetConnection.

Fig. 1: FA3ST Service: Non-Technical View.

BASICS 1

https://industrialdigitaltwin.org/en/content-hub/aasspecifications

FA3ST Service

2 BASICS

CHAPTER

ONE

IMPLEMENTED AAS SPECIFICATIONS

• Details of the Asset Administration Shell - Part 1: Metamodel v3.0 (specification)

• Details of the Asset Administration Shell - Part 2: Application Programming Interfaces v3.0.1 (specification)
(OpenAPI)

3

https://industrialdigitaltwin.org/en/content-hub/aasspecifications/specification-of-the-asset-administration-shell-part-1-metamodel-idta-number-01001-3-0
https://industrialdigitaltwin.org/en/content-hub/aasspecifications/specification-of-the-asset-administration-shell-part-2-application-programming-interfaces-idta-number-01002-3-0
https://app.swaggerhub.com/apis/Plattform_i40/Entire-API-Collection/V3.0.1

FA3ST Service

4 Chapter 1. Implemented AAS Specifications

CHAPTER

TWO

FEATURES

• Easy to use even for non-developers via command-line interface (CLI), docker container, or embedded library

• Configuration via a single JSON file

• Open Architecture: easily extendable and configurable

• Asset Synchronization: synchronize your assets and DTs using arbitrary communication protocols

• Allows accessing your DT using multiple endpoints at the same time, e.g., HTTPS and OPC UA

• Uses existing open source implementation of AAS datamodel and de-/serializers Eclipse AAS4J

• Supports several dataformats for the Asset Administration Shell Environment: AASX, JSON, XML

Caution: At the moment there is no security specification available for the AAS. Therefore FA3ST does not
implement any security mechanisms. They will be implemented as soon as a security specification is available. We
strongly recommend to be careful when using external AAS models or submodels.

2.1 Getting Started

FA3ST Service uses the concept of an open architecture. This means, it is designed to be easily extenadable and
customizable.

The main components of FA3ST Service are AAS Model, which basically is a representation of the meta model classes
of the AAS such as Asset Administration Shell, Submodel, SubmodelElement, or Property, and Core, which implements
all the processing logic. Besides those two central components, FA3ST Service offers multiple interfaces that each
can have different and/or custom implementations. FA3ST Service already ships with a number of so-called default
implementations of these interfaces depicted by the light-grey boxes to the left and right in the figure.

The interfaces provide the following functionalities:

• Endpoint: Communication with the DT from the outside

• MessageBus: Communication & synchronization between FA3ST Service components

• De-/Serializer: De-/Serialization of AAS models in from/to data formats

• Persistence: Persistent storage of data (model + values)

• FileStorage: Peristent storage of complementary files (e.g. PDF files linked from the AAS)

• AssetConnection: Synchronization with underlying asset(s)

5

https://github.com/eclipse-aas4j/aas4j

FA3ST Service

Fig. 1: High-Level Architecture of FA3ST Service.

2.2 Installation

2.2.1 Requirements

• Java Runtime 17 or newer

2.2.2 Precompiled JAR

Latest RELEASE version (1.0.1)

Latest SNAPSHOT version (1.1.0-SNAPSHOT)

6 Chapter 2. Features

FA3ST Service

2.2.3 Maven Dependency

<dependency>
<groupId>de.fraunhofer.iosb.ilt.faaast.service</groupId>
<artifactId>starter</artifactId>
<version>1.0.1</version>

</dependency>

2.2.4 Gradle Dependency

implementation 'de.fraunhofer.iosb.ilt.faaast.service:starter:1.0.1'

2.2.5 Build from Source

git clone https://github.com/FraunhoferIOSB/FAAAST-Service
cd FAAAST-Service
mvn clean install

2.2. Installation 7

FA3ST Service

2.3 Usage

2.3.1 Command-Line Interface (CLI)

To start FA3ST Service from command-line you need to run the starter module by calling

> java -jar starter-{version}.jar

When started without arguments, FA3ST Service will try to auto-detect a configuration file named config.json and
a model file named model.[ext] where [ext] is a supported file extension like json, xml, or aasx.

To manually pass a model file my-model.aasx and a configuration file my-config.json run the following command:

> java -jar starter-{version}.jar --model my-model.aasx --config my-config.json

8 Chapter 2. Features

FA3ST Service

Table 1: Supported CLI arguments and environment variables.

CLI
(short)

CLI
(long)

Environment vari-
able

AllowedVal-
ues

Description De-
fault-
Value

-c –con-
fig

faaast_config The config file to use. con-
fig.json

-e –empty-
model

Starts the FAST service with an empty Asset Ad-
ministration Shell Environment.

–end-
point

HTTPOPCUA Additional endpoints that should be started.

-h –help Print help message and exit.

–loglevel-
external

faaast_loglevel_externalTRACEDE-
BUGIN-
FOWARN-
ERROR

Sets the log level for external packages.This over-
rides the log level defined by other commands such
as -q or -v.

WARN

–loglevel-
faaast

faaast_loglevel_faaast TRACEDE-
BUGIN-
FOWARN-
ERROR

Sets the log level for FA3ST packages.This overrides
the log level defined by other commands such as -q
or -v.

WARN

-m –model The model file to load. model.*

–no-
validation

faaast_no_validation Disables all validation, overrides validation defined
in the configuration Environment.

-q –quite Reduces log output (ERROR for FAST packages,
ERROR for all other packages).Default information
about the starting process will still be printed.

-v –ver-
bose

Enables verbose logging (INFO for FAST packages,
WARN for all other packages).

-V –ver-
sion

Print version information and exit.

-vv Enables very verbose logging (DEBUG for FAST
packages, INFO for all other packages).

-
vvv

Enables very very verbose logging (TRACE for
FAST packages, DEBUG for all other packages).

{key}={value}faaast_config_extension_{key}with
{key} separated by
_

any Additional properties to override values of configu-
ration using JSONPath notation without starting $.

2.3.2 Docker

FA3ST Service is available on DockerHub with multiple tags

• latest: The latests released version, equals to the latests tag major.minor.bugfix

• major.minor.0-SNAPSHOT: Snapshot build of the current code on the main branch of FA3ST Service. This
includes all upcoming features not yet relased.

• major.minor.bugfix: This tag is available for each officially released version of FA3ST. It is stable, i.e., no
updates or bugfixes will ever be applied.

• major.minor: This tag is available for each minor release of FA3ST Service and will be updated with bugfixes
over time. It is therefore recommended to use these tags over the major.minor.bugfix ones.

2.3. Usage 9

https://goessner.net/articles/JsonPath/
https://hub.docker.com/r/fraunhoferiosb/faaast-service

FA3ST Service

To run FA3ST Service via docker with an empty model and default configuration execute

> docker run fraunhoferiosb/faaast-service

To make you of the full power of docker and FA3ST Service, you can also mount files to the container and pass arguments
via CLI or environment variables like this

> docker run -v {path to your model file}:/model.json -e faaast.model=model.json␣
→˓fraunhoferiosb/faaast-service '--no-validation'

FA3ST Service also comes with a docker compose file located at /misc/docker/docker-compose.yml which can
be executed by navigation to the directory /misc/docker and execute docker-compose up.

2.3.3 From Java Code

You can run FA3ST Service directly from your Java code as embedded library. This way, you can create your configu-
ration and model directly in code and don’t have to create them as files (you can still load them from files if you want
to). The following code snippet shows how to create and run a new FA3ST Service from code using a model file.

Listing 1: Create a FA3ST Service from code.

1 Service service = new Service(ServiceConfig.builder()
2 .core(CoreConfig.builder()
3 .requestHandlerThreadPoolSize(2)
4 .build())
5 .persistence(PersistenceInMemoryConfig.builder()
6 .initialModelFile(new File("{pathTo}\\FAAAST-Service\\misc\\examples\\

→˓model.aasx"))
7 .build())
8 .endpoint(HttpEndpointConfig.builder().build())
9 .messageBus(MessageBusInternalConfig.builder().build())

10 .fileStorage(FileStorageInMemoryConfig.builder().build())
11 .build());
12 service.start();

2.4 Configuration

Configuration in FA3ST Service happens primamirly via a single JSON file. However, it is also possible to override
configuration properties through command-line arguments and environment variables, where command-line arguments
have precedence over environment variables while both override properties defined in the configuration file.

The configuration file contains a core section as well as multiple sections telling FA3ST Service which implementations
to use for the available interfaces and how to configure them.

Listing 2: Structure of the configuration file.

1 {
2 "core" : { }, // core configuration not related to interfaces
3 "endpoints" : [], // [0..*] default: HTTP
4 "persistence" : { }, // [0..1] default: in-memory
5 "fileStorage" : {}, // [0..1] default: in-memory
6 "messageBus" : { }, // [0..1] default: internal

(continues on next page)

10 Chapter 2. Features

FA3ST Service

(continued from previous page)

7 "assetConnections": [] // [0..*] default: none
8 }

A configuration base is always based on the default configuration, meaning that it only needs to contain properties that
differ from the default configuration. For example, providing only the core section is a valid configuration and will
contain default values for all other sections. This is a common scenario if you want to quickly setup FA3ST Service for
your first experiments.

Listing 3: Configuration file with only core section. All other sections
will use default values.

1 {
2 "core" : {
3 // custom core settings
4 }
5 }

2.4.1 Core Configuration

The core configuration block contains properties not related to the implementation of any interface.

Table 2: Configuration properties of core configuration section.

Name Allowed
Values

Description Default Value

requestHandlerThreadPool-
Size(optional)

Integer Number of concurrent thread that can exe-
cute API requests

2

assetConnectionRetryInter-
val(optional)

Long Interval in ms in which to retry establishing
asset connections

1000

validationOnLoad(optional) Object Validation rules to use when loading the
AAS model at startup

all enabled

validationOnCre-
ate(optional)

Object Validation rules to use when creating new el-
ements via API

constraints validation
disabled

validationOnUp-
date(optional)

Object Validation rules to use when updating ele-
ments via API

constraints validation
disabled

Listing 4: Example core configuration

1 {
2 "core" : {
3 "requestHandlerThreadPoolSize": 2,
4 "assetConnectionRetryInterval": 1000,
5 "validationOnLoad": {
6 "validateConstraints": true, // currently ignored because␣

→˓AAS4J does not yet implement validation for AAS v3.0
7 "idShortUniqueness": true,
8 "identifierUniqueness": true
9 },

10 "validationOnCreate": {
11 "validateConstraints": false, // currently ignored␣

(continues on next page)

2.4. Configuration 11

FA3ST Service

(continued from previous page)

→˓because AAS4J does not yet implement validation for AAS v3.0
12 "idShortUniqueness": true,
13 "identifierUniqueness": true
14 },
15 "validationOnUpdate": {
16 "validateConstraints": false, // currently ignored␣

→˓because AAS4J does not yet implement validation for AAS v3.0
17 "idShortUniqueness": true,
18 "identifierUniqueness": true
19 }
20 },
21 // ...
22 }

2.4.2 Configuring Interface Implementations

For each interface in the architecture, you can choose one (or sometimes multiple) interface(s) to be used. As every
interface implementation may require different configuration properties which FA3ST does not know about (as the im-
plementation may be developed by 3rd parties at any time), the configuration section for each interface implementation
uses the following structure

Listing 5: Common structure for configuring an interface implementa-
tion.

1 {
2 "@class" : "...", // fully-qualified Java class name of the class␣

→˓implementing the interface
3 // implementation-specific configuration properties
4 }

Which properties are available for each implementation should be documented, e.g., for all default implementations
these properties are documented in the corresponding page of the documentation for each of the implementations.

The following shows an example of a configuration using and HTTP endpoint with port 443.

12 Chapter 2. Features

FA3ST Service

Listing 6: Example configuration with HTTP endpoint using port 443.

1 {
2 "endpoints" : {
3 "@class" : "de.fraunhofer.iosb.ilt.faaast.service.endpoint.http.

→˓HttpEndpoint",
4 "port" : 443
5 },
6 // ...
7 }

2.4.3 Using 3rd Party Interface Implementations

For FA3ST to be able to load an implementation that is not pre-packaged with FA3ST, you need to put a JAR file
containing the respective class in the same directory as the FA3ST Service JAR. Furthermore, all dependencies of that
class need also be resolvable. This can be achieved by either packaging them into the same JAR (e.g. using the Maven
Shade Plugin) or manually providing the required JAR files alongside the implementation.

2.4.4 Providing certificates in configuration

Multiple components of FA3ST Service make use of certificates, either by using them for their own services or by
trusting the provided certificates. The default way to exchange certificates in FA3ST Service is via Java KeyStores. To
simplify configuration, the same configuration object is re-used across different components, for example in the HTTP
Endpoint. The structure of the certificate-related configuration object is explained in the following.

Table 3: Configuration properties of generic certificate section.

Name Allowed
Values

Description Default Value

keyPassword String The password for the key.Warning: may cause unexpected be-
havior if not set or set to empty string in some cases

key-
StorePass-
word

String The password for the key store

key-
StorePath

String File containing the key store

keyAlias(optional)String The alias to use, e.g. when loading a certificate and the key store
contains multiple entries

null, i.e. first en-
try will be used

keyStore-
Type(optional)

String Type of the KeyStore, e.g. PKCS12 or JKS PKCS12

Listing 7: Example certificate information

1 {
2 "keyStoreType": "PKCS12",
3 "keyStorePath": "C:\faaast\MyKeyStore.p12",
4 "keyStorePassword": "changeit",
5 "keyAlias": "server-key",
6 "keyPassword": "changeit"
7 }

2.4. Configuration 13

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html

FA3ST Service

2.4.5 Overriding Config Properties

As indicated by the last row in the above table, any config property can be overridden both via CLI or via environment
variables.

Via CLI

Via CLI this is done by using the JSONPath expression to the property within the config file but without the $. part
JSONPath expression typically start with.

For example, to override the requestHandlerThreadPoolSize property call FA3ST Service like this

> java -jar starter-{version}.jar [any other CLI arguments] core.
→˓requestHandlerThreadPoolSize=42

To access configuration properties inside an array or list use array notation, e.g., endpoints[0].port=8081

Via Environment Variables

Overriding configuration properties via environment variables is similar to overriding them via CLI with two differences

1. Add the prefix faaast_config_extension_

2. Replace . that separate the JSONPath with _

Applying the previous examples yields faaast_config_extension_core_requestHandlerThreadPoolSize=42
to update the property requestHandlerThreadPoolSize and faaast_config_extension_endpoints[0]_port=8081
to update the port of the HTTP endpoint.

2.5 Endpoint

The Endpoint interface is responsible for communication with the AAS from the outside, e.g. users or external appli-
cations. An instance of FA3ST Service can serve multiple endpoints at the same time. Endpoints will be synchronized,
meaning if a FA3ST Service offers multiple endpoint such as HTTP(S) and OPC UA at the same time, changes done
via one of the endpoints like updating a value is reflected in the other.

The following is an example of the relevant part of the configuration part comprising both an HTTP(S) and OPC UA
endpoint

Listing 8: Example configuration for running both an HTTP and OPC
UA endpoint.

1 {
2 "endpoints": [
3 {
4 "@class": "de.fraunhofer.iosb.ilt.faaast.service.endpoint.http.

→˓HttpEndpoint",
5 "port": 443,
6 "corsEnabled": true
7 },
8 {
9 "@class": "de.fraunhofer.iosb.ilt.faaast.service.endpoint.opcua.

→˓OpcUaEndpoint",
(continues on next page)

14 Chapter 2. Features

FA3ST Service

(continued from previous page)

10 "tcpPort": 8081
11 }
12],
13 // ...
14 }

2.5.1 HTTP

The HTTP Endpoint allows accessing data and execute operations within the FA3ST Service via REST-API. In accor-
dance to the specification, only HTTPS is supported since AAS v3.0. The HTTP Endpoint is based on the document
Details of the Asset Administration Shell - Part 2: Application Programming Interfaces v3.0 and the corresponding
OpenAPI documentation v3.0.1.

Configuration

Table 4: Configuration properties of HTTP Endpoint.

Name Al-
lowed
Value

Description Default
Value

certifi-
cate(optional)

Cer-
tifi-
cate-
Info

The HTTPS certificate to use. self-
signed
certifi-
cate

corsEn-
abled(optional)

Boolean If Cross-Origin Resource Sharing (CORS) should be enabled.Typically required
if you want to access the REST interface from any machine other than the one
running FA3ST Service.

false

port(optional)Inte-
ger

The port to use. 443

sniEn-
abled(optional)

Boolean If Server Name Identification (SNI) should be enabled.This should only be dis-
abled for testing purposes as it may present a security risk!

true

Listing 9: Example configuration section for HTTP Endpoint.

1 {
2 "endpoints": [{
3 "@class": "de.fraunhofer.iosb.ilt.faaast.service.endpoint.http.

→˓HttpEndpoint",
4 "port": 443,
5 "corsEnabled": true,
6 "sniEnabled": true,
7 "certificate": {
8 "keyStoreType": "PKCS12",
9 "keyStorePath": "C:\faaast\MyKeyStore.p12",

10 "keyStorePassword": "changeit",
11 "keyAlias": "server-key",
12 "keyPassword": "changeit"
13 }
14 }],

(continues on next page)

2.5. Endpoint 15

https://industrialdigitaltwin.org/en/content-hub/aasspecifications/specification-of-the-asset-administration-shell-part-1-metamodel-idta-number-01001-3-0
https://app.swaggerhub.com/apis/Plattform_i40/Entire-API-Collection/V3.0.1

FA3ST Service

(continued from previous page)

15 // ...
16 }

API

FA3ST Service supports the following APIs as defined by the OpenAPI documentation v3.0.1

• Asset Administration Shell API

• Submodel API

• Asset Administration Shell Repository API

• Submodel Repository API

• Concept Description API

• Asset Administration Shell Basic Discovery API

• Serialization API

• Description API

Using HTTP PATCH

As the AAS specification is currently does not properly specify show HTTP PATCH requests are expected to work,
FA3ST Service follows the well-established RFC 7386 JSON Merge Patch. In short, this means that as payload you
can send a JSON document that only contains the properties of the original document you want to update. To delete
elements set the value explicitely to null.

As a consequence, URLs for all different content modifiers, i.e. /$metadata, /$value, as well as the call without any
modifiers, are redundant and provide exactly the same functionality in FA3ST Service.

Caution: Arrays in JSON objects can only be replaced, i.e. if you want to update a single element within an array
you first need to get the current value of the array, modify the element to be updated and then send the whole array
as part of the PATCH payload.

Invoking Operations

To invoke an operation, make a POST request according to this URL example: /submodels/{submodelId
(base64-URL-encoded)}/submodel-elements/{idShortPath to operation}/invoke.

Tip: You can invoke operations asynchronuously by calling .../invoke-async instead of .../invoke in which
case you get back a handleId instead of the result. To monitor the execution state call .../operation-status/
{handleId} and once finished you can get the result calling .../operation-results/{handleId} or .../
operation-results/{handleId}/$value for the ValueOnly serialization.

Depending on the in & inoutput arguments, the payload should look like this.

16 Chapter 2. Features

https://app.swaggerhub.com/apis/Plattform_i40/Entire-API-Collection/V3.0.1
https://datatracker.ietf.org/doc/html/rfc7386

FA3ST Service

Listing 10: Example payload for invoking operations synchronously

1 {
2 "inputArguments": [{
3 "value": {
4 "modelType": "Property",
5 "value": "4",
6 "valueType": "xs:int",
7 "idShort": "in"
8 },
9 // additional input arguments

10 }],
11 "inoutputArguments": [{
12 "value": {
13 "modelType": "Property",
14 "value": "original value",
15 "valueType": "xs:string",
16 "idShort": "note"
17 },
18 // additional inoutput arguments
19 }],
20 "clientTimeoutDuration": "PT10S" // ISO8601 duration, here: 10 seconds
21 }

An easier, or at least less verbose way, of invoking operations is by using the ValueOnly serialization. For this, add
/$value to the end of the URL, i.e. resulting in either .../invoke/$value or .../invoke-async/$value. The
payload will be simplified and look similar to this

Listing 11: Example payload for invoking operations with ValueOnly

1 {
2 "inputArguments": {
3 "in": 4
4 },
5 "inoutputArguments": {
6 "note": "original value"
7 },
8 "clientTimeoutDuration": "PT10S"
9 }

2.5.2 OPC UA

The OPC UA Endpoint allows accessing data and execute operations within the FA3ST Service via OPC UA.

Unfortunately, there is currently no official mapping of the AAS API to OPC UA for AAS v3.0. Nevertheless, FA3ST
Service decided to still provide an OPC UA endpoint even though it is not (yet) standard-compliant. This implementa-
tion is based on the OPC UA Companion Specification OPC UA for Asset Administration Shell (AAS) which defines a
mapping between AAS and OPC UA for AAS v2.0 enriched with some custom adjustments and extensions to be used
with AAS v3.0.

The OPC UA Endpoint is built with the Prosys OPC UA SDK for Java which means in case you want to compile the
OPC UA Endpoint yourself, you need a valid license for the SDK (which you can buy here. For evaluation purposes,
you also have the possibility to request an evaluation license. However, this is not necessary for using the OPC UA

2.5. Endpoint 17

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models/opc-ua-for-i4-asset-administration-shell/
https://www.prosysopc.com/products/opc-ua-java-sdk/
https://www.prosysopc.com/products/opc-ua-java-sdk/purchase/
https://www.prosysopc.com/products/opc-ua-java-sdk/evaluate

FA3ST Service

Endpoint we already provide a pre-compiled version that is used by default when building FA3ST Service from code.
The developers of the Prosys OPC UA SDK have been so kind to allow us to publish that pre-compiled version as part
of this open-source project under the condition that all classes related to their SDK are obfuscated.

Configuration Parameters

OPC UA Endpoint configuration supports the following configuration parameters

Name Allowed Value Description Default Value
dis-
covery-
ServerUrl(optional)

String URL of the discovery server.If empty,
discovery server registration is dis-
abled.

second-
sTillShut-
down(optional)

Integer The number of seconds the server
waits for clients to disconnect

2

serverCer-
tificate-
BasePath(optional)

String Path where the server application cer-
tificates are stored

PKI/CA

support-
edAu-
thentica-
tions(optional)

AnonymousUserNameCertifi-
cate

List of supported authentication types Anonymous

support-
edSecu-
rityPoli-
cies(optional)

NONEBA-
SIC128RSA15BASIC256BASIC256SHA256AES128_SHA256_RSAOAEPAES256_SHA256_RSAPSS

List of supported security policies NONE,BASIC256SHA256,AES128_SHA256_RSAOAEP,AES256_SHA256_RSAPSS

tcp-
Port(optional)

Integer The port to use for TCP 4840

userMap(optional)Map<String, String> A map containing usernames and
password.If UserName is not included
in supportedAuthentications,
this property is ignored.

empty

userCer-
tificate-
BasePath(optional)

String Path where the certificates for user au-
thentication are saved

USERS_PKI/CA

Certificate Management

The path provided with the serverCertificateBasePath configuration property stores the server and client appli-
cation certificates and contains the following subdirectories

• /certs: trusted client certificates

• /crl: certificate revocation list for client certificates

• /issuers/certs: certificates of trusted CAs

• /issuers/crl: certificate revocation list for CA certificates

• /issuers/rejected: rejected CA certificates

• /private: certificates for the OPC UA server

• /rejected: unkown/rejected client certificates

18 Chapter 2. Features

FA3ST Service

To provision the OPC UA Endpoint to use an existing certificate for the server, save the certificate file as
{serverCertificateBasePath}/private/Fraunhofer IOSB AAS OPC UA Server@{hostname}_2048.
der and the private key as {serverCertificateBasePath}/private/Fraunhofer IOSB AAS OPC UA
Server@{hostname}_2048.pem where {hostname} is the host name of your machine.

When an unkown client connects to the OPC UA Endpoint, the connection will be rejected and its client certificate will
be stored in /rejected. To trust the certificate of a client and allow the connection, move the file to /certs.

The path provided with the userCertificateBasePath configuration property stores the user certificates and con-
tains the following subdirectories

• /certs: trusted user certificates

• /crl: certificate revocation list for user certificates

• /issuers/certs: certificates of trusted CAs

• /issuers/crl: certificate revocation list for CA certificates

• /issuers/rejected: rejected CA certificates

• /rejected: unkown/rejected client certificates

Similar to the client certificates, unknown user certificates are stored in /rejected the first time a new certificate is
encountered. To trust this certificate, simply move it to /certs.

and userCertificateBasePath point to directories where the corresponding certificates are stored. These directo-
ries contain the following subdirectories:

Listing 12: Example configuration for OPC UA Endpoint.

1 {
2 "endpoints": [{
3 "@class": "de.fraunhofer.iosb.ilt.faaast.service.endpoint.opcua.

→˓OpcUaEndpoint",
4 "tcpPort" : 18123,
5 "secondsTillShutdown" : 5,
6 "discoveryServerUrl" : "opc.tcp://localhost:4840",
7 "userMap" : {
8 "user1" : "secret"
9 },

10 "serverCertificateBasePath" : "PKI/CA",
11 "userCertificateBasePath" : "USERS_PKI/CA",
12 "supportedSecurityPolicies" : ["NONE", "BASIC256SHA256",

→˓"AES128_SHA256_RSAOAEP"],
13 "supportedAuthentications" : ["Anonymous", "UserName"]
14 }],
15 //...
16 }

2.5. Endpoint 19

FA3ST Service

OPC UA Client Libraries

To connect to the OPC UA Endpoint, you need an OPC UA Client. Here are some example libraries and tools you can
use:

• Eclipse Milo: Open Source SDK for Java.

• Unified Automation UaExpert: Free OPC UA test client (registration on website required for download).

• Prosys OPC UA Browser: Free OPC UA test client (registration on website required for download).

• Official Samples from the OPC Foundation: C#-based sample code from the OPC Foundation.

Fig. 2: Screenshot showing UaExpert connected to a FA3ST Service via OPC UA Endpoint.

API

As stated, there is currently no official mapping of the AAS API to OPC UA for AAS v3.0 but FA3ST Service imple-
ments its proprietary adaption of the mapping for AAS v2.0.

20 Chapter 2. Features

https://github.com/eclipse/milo
https://www.unified-automation.com/downloads/opc-ua-clients.html
https://www.prosysopc.com/products/opc-ua-browser/
https://github.com/OPCFoundation/UA-.NETStandard-Samples

FA3ST Service

Supported Functionality

• Writing values for the following types

– Property

– Range

– Blob

– MultiLanguageProperty

– ReferenceElement

– RelationshipElement

– Entity

• Operations (OPC UA method calls). Exception: Inoutput-Variables are not supported in OPC UA.

Not (yet) Supported Functionality

• Updating the model, i.e., adding new elements at runtime is not possible

• Writing values for the following types

– DataSpecifications

– Qualifier

– Category

– ModelingKind

• AASDataTypeDefXsd

– Base64Binary

– UnsignedInt

– UnsignedLong

– UnsignedShort

– UnsignedByte

2.6 AssetConnection

The AssetConnection interface is responsible for synchronizing values of the model with assets. Although asset syn-
chronization is not part of the AAS specification, we believe this functionality is essential for digital twins, at least
when located on edge-level, i.e., close to an actual machine/asset.

The following figure depicts how asset synchronization works in more detail.

The top half shows a examplenary AAS model that we want to synchronize with the underlying asset. In the center we
have the AssetConnection interface which holds multiple of so-called Providers. There are three types of providers:

• ValueProvider: for reading data from and writing data to to asset whenever the value of the corresponding AAS
element is read/written

• OperationProvider: for forwarding operation invocation requests to the asset and translating the response back
to be AAS-compliant

2.6. AssetConnection 21

FA3ST Service

Fig. 3: How AssetConnection works in FA3ST Service.

22 Chapter 2. Features

FA3ST Service

• SubscriptionProvider: for subscribing to changes on the asset and therefore continuously updating the value of
the corresponding AAS element

The mapping between AAS elements and providers is defined in the configuration of the AssetConnection. There-
fore, the configuration section for all implementations of the AssetConnection interface share the following common
structure.

Listing 13: Common configuration structure for all AssetConnection im-
plementations.

1 {
2 "assetConnections": [{
3 "@class": "...",
4 // connection-level configuration
5 "valueProviders":
6 {
7 "{serialized Reference of AAS element}":
8 {
9 // value provider configuration

10 }
11 },
12 "operationProviders":
13 {
14 "{serialized Reference of AAS element}":
15 {
16 // operation provider configuration
17 }
18 },
19 "subscriptionProviders":
20 {
21 "{serialized Reference of AAS element}":
22 {
23 // subscription provider configuration
24 }
25 }
26 }],
27 //...
28 }

The value of {serialized Reference of AAS element} is the Reference to the AAS element serialized us-
ing the rules described in Section 7.2.3 of AAS Specification - Part 1. An example value could look like this
[ModelRef](Submodel)urn:aas:id:example:submodel:1, (Property)Property1.

Important: The format for serializing references has changed with AAS v3.0 resp. FA3ST Service v1.0. For example,
the id type is now no longer part of the serialization and path elements are now separated by , (comma followed by
space) instead of , (comma).

The available configuration properties for connection-level and the providers are implementation-specific. This is
necessary because different protocols require different types of information, e.g. for OPC UA an AAS element could
be mapped to an OPC UA node which means the configuration must contain the node ID, while for MQTT we need a
topic on which to listen and maybe even information about the payload format.

Note: An implementation does not have to implement all three provider types. In fact, it is often not possible to

2.6. AssetConnection 23

https://industrialdigitaltwin.org/wp-content/uploads/2023/06/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Part1_Metamodel.pdf

FA3ST Service

implement all of them for a given network protocol as most protocols do not support pull-based and pub/sub mechanisms
at the same time (e.g. HTTP, MQTT).

Tip: You can define both a ValueProvider and a SubscriptionProvider for the same element. This allows you to reflect
in the asset changes in near real-time in your AAS and at the same time to update the value on the asset via the AAS
API. This is especially useful when starting FA3ST with an OPC UA endpoint as it allows users to subscribe to changes
or AAS properties via OPC UA.

2.6.1 OperationProvider Configuration

All OperationProvider share the following common set of configuration properties.

Table 5: Common configuration properties of OperationProviders.

Name Allowed Value Description Default Value
inputValidation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for in-
put arguments

RE-
QUIRE_PRESENT_OR_DEFAULT

inoutputValidation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for in-
output arguments

RE-
QUIRE_PRESENT_OR_DEFAULT

outputValidation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for
ouput arguments

RE-
QUIRE_PRESENT_OR_DEFAULT

Validation of operation arguments

Validation of operation argument can be configured independently for in-, out-, and inoutput arguments to be one of
the following values

• NONE: no validation at all is performed

• REQUIRE_PRESENT: requires all arguments defined for the operation to be provided in the call and all argu-
ments provided to be defined for the operation. This check works only on argument name (idShort) and not
argument datatype.

• REQUIRE_PRESENT_OR_DEFAULT: sets all arguments defined for the operation but not provided in the call
to the default value, i.e. the value given in the definition of the argument. Similar to REQUIRE_PRESENT, this
requires the call to only contain arguments that are defined for the operation and works only on argument name
ignoring the argument datatype.

2.6.2 HTTP

Supported Providers

• ValueProvider

– read ✓✓✓

– write ✓✓✓

• OperationProvider ✓✓✓

• SubscriptionProvider ✓✓✓ (via polling)

24 Chapter 2. Features

FA3ST Service

Configuration

Connection-Level

Table 6: Configuration properties of HTTP AssetConnection.

Name Allowed
Value

Description Default
Value

baseUrl String Base URL of the HTTP server, e.g. http://example.com.

headers(optional) Map<String,String>Headers to send with each request. empty list
password(optional) String Password for connecting to the HTTP server.

trustedCertifi-
cates(optional)

Certificate-
Info

Trusted certificates, i.e. when connecting to a server that is
using self-signed certificates.

user-
name(optional)

String Username for connecting to the HTTP server.

Value Provider

Table 7: Configuration properties of HTTP AssetConnection Value
Provider.

Name Allowed
Value

Description De-
fault
Value

format JSONXML Content format of the payload.

head-
ers(optional)

Map<String,String>Headers to send with each request.Overrides connection-level headers. empty
list

path String Path for the HTTP request, relative to the baseUrl of the connection.

query(optional)String Additional information how to extract actual value from received mes-
sages.Depends on format, e.g. for JSON this is a JSONPath expression.

tem-
plate(optional)

String Template used to format payload when sending via HTTP.

writeMethod(optional)GETPUT-
POST

HTTP method to use when writing a value to HTTP. PUT

Listing 14: Example configuration section for HTTP AssetConnection.

1 {
2 "format": "JSON",
3 "path": "/foo",
4 "headers": {
5 "foo": "bar"
6 },
7 "query": "$.foo",
8 "template": "{\"foo\" : \"${value}\"}",

(continues on next page)

2.6. AssetConnection 25

FA3ST Service

(continued from previous page)

9 "writeMethod": "POST"
10 }

Operation Provider

Table 8: Configuration properties of HTTP AssetConnection Operation
Provider.

Name Allowed Value Description Default
Value

format JSONXML Content format of the payload.

head-
ers(optional)

Map<String,String> Headers to send with each request.Overrides connection-
level headers.

empty list

inputVal-
idation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for input arguments RE-
QUIRE_PRESENT_OR_DEFAULT

inout-
putVal-
idation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for inoutput arguments RE-
QUIRE_PRESENT_OR_DEFAULT

method(optional)PUTPOST HTTP method to use. POST
outputVal-
idation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for ouput arguments RE-
QUIRE_PRESENT_OR_DEFAULT

path String Path for the HTTP request, relative to the baseUrl of the
connection.

queries(optional)Map<String,String> Map of result variable idShorts and corresponding query ex-
pressions to fetch them from returned valueQuery expres-
sions depend on format, e.g. for JSON this is a JSONPath
expression.

tem-
plate(optional)

String Template used to format payload when sending via HTTP.

Listing 15: Example configuration section for HTTP OperationProvider
for an Operation with input parameters in1 and in2 and output parame-
ters out1 and out2.

1 {
2 "format": "JSON",
3 "path": "/foo/execute",
4 "headers": {
5 "foo": "bar"
6 },
7 "method": "POST",
8 "template": "{\"input1\" : \"${in1}\", \"input2\" : \"${in2}\"}",
9 "queries": {

10 "out1": "$.output1",
11 "out2": "$.output2"

(continues on next page)

26 Chapter 2. Features

FA3ST Service

(continued from previous page)

12 }
13 }

Subscription Provider

Table 9: Configuration properties of HTTP AssetConnection Subscrip-
tion Provider.

Name Allowed
Value

Description Default
Value

format JSONXML Content format of the payload.

head-
ers(optional)

Map<String,String>Headers to send with each request.Overrides connection-level headers. empty
list

inter-
val(optional)

long Interval to poll the server for changes (in ms). 100

method(optional)GETPUT-
POST

HTTP method to use when writing a value to HTTP. GET

path String Path for the HTTP request, relative to the baseUrl of the connection.

pay-
load(optional)

String Static content to send with each request.

query(optional)String Additional information how to extract actual value from received mes-
sages.Depends on format, e.g. for JSON this is a JSONPath expression.

Listing 16: Example configuration section for HTTP Subscription-
Provider.

1 {
2 "path": "/foo",
3 "headers": {
4 "foo": "bar"
5 },
6 "interval": "500",
7 "method": "GET",
8 "template": "{\"foo\" : \"bar\"}"
9 }

2.6.3 MQTT

Supported Providers

• ValueProvider

– read

– write ✓✓✓

• OperationProvider

• SubscriptionProvider ✓✓✓

2.6. AssetConnection 27

FA3ST Service

Configuration

Connection-Level

Table 10: Configuration properties of MQTT AssetConnection.

Name Allowed Value Description Default Value
clientId(optional) String Id of the MQTT client used to connect to the server randomly gener-

ated
password(optional) String Password for connecting to the MQTT server

serverUri String URL of the MQTT server, e.g. tcp://localhost:1883

user-
name(optional)

String Username for connecting to the MQTT server

Value Provider

Table 11: Configuration properties of MQTT AssetConnection Value
Provider.

Name Allowed Value Description Default Value
format JSONXML Content format of the payload.

topic String MQTT topic to use.

template(optional) String Template used to format payload.

28 Chapter 2. Features

FA3ST Service

Listing 17: Example configuration section for MQTT ValueProvider.

1 {
2 "format": "JSON",
3 "topic": "example/myTopic",
4 "template": "{\"foo\" : \"${value}\"}"
5 }

Subscription Provider

Table 12: Configuration properties of MQTT AssetConnection Subscrip-
tion Provider.

Name Allowed
Value

Description Default
Value

format JSONXMLContent format of the payload.

topic String MQTT topic to use.

query(optional)String Additional information how to extract actual value from received mes-
sages.Depends on format, e.g. for JSON this is a JSONPath expression.

Listing 18: Example configuration section for MQTT Subscription-
Provider.

1 {
2 "format": "JSON",
3 "topic": "example/myTopic",
4 "query": "$.foo"
5 }

2.6.4 OPC UA

Supported Providers

• ValueProvider

– read ✓✓✓

– write ✓✓✓

• OperationProvider ✓✓✓

• SubscriptionProvider ✓✓✓

2.6. AssetConnection 29

FA3ST Service

Configuration

Connection-Level

Table 13: Configuration properties of OPC UA AssetConnection.

Name Allowed Value Description Default
Value

acknowl-
edgeTime-
out(optional)

Integer Timeout for acknowledgement (in ms). 10000

applica-
tionCertifi-
cate(optional)

CertificateInfo The application certificate.

authentica-
tionCertifi-
cate(optional)

CertificateInfo The authentication/user certificate.

host String URL of the OPC UA server, e.g.
opc.tcp://localhost:4840

pass-
word(optional)

String Password for connecting to the OPC
UA server.This value is required if
userTokenType is set to UserName.

request-
Time-
out(optional)

int Timeout for requests (in ms) 3000

security-
BaseDir(optional)

String Base directory for the certificate han-
dling.

.

security-
Mode(optional)

NoneSignSignAndEncrypt Security Mode for the connection to the
OPC UA server.

None

securityPol-
icy(optional)

NoneBasic256Sha256Aes128_Sha256_RsaOaepAes256_Sha256_RsaPssDesired Security Policy for the connec-
tion to the OPC UA server.

None

trans-
portPro-
file(optional)

TCP_UASC_UABINARYHTTPS_UABINARYHTTPS_UAXMLHTTPS_UAJSONWSS_UASC_UABINARYWSS_UAJSONTransport Profile for the connection to
the OPC UA server.

TCP_UASC_UABINARY

user-
name(optional)

String Username for connecting to the OPC
UA server.This value is required if
userTokenType is set to UserName.

userToken-
Type(optional)

AnonymousUserNameCertificate User Token Type for connecting to the
OPC UA server.

Anony-
mous

Remarks on certificate management

In OPC UA , certificates can be used for two purposes:

• encryption & signing of messages, and

• authentication of a client.

We call the certificate used for encryption application certificate and the one used for authenticating a client authenti-
cation certificate. You can choose to use only one of these options or both. If using both, you can use different or the
same certificates.

30 Chapter 2. Features

FA3ST Service

Application Certificate

An application certificate is required if the property securityMode is set to Sign or SignAndEncrypt.

Which application certificate to use is determined by the following steps:

• applicationCertificate.keyStorePath if it is an absolute file path and the file exists (default: applica-
tion.p12)

• {securityBaseDir}/{applicationCertificate.keyStorePath} if the file exists (default: ./
{applicationCertificate.keyStorePath})

• otherwise generate self-signed certificate and store it at applicationCertificate.keyStorePath
(if applicationCertificate.keyStorePath is an absolute file path) or else {securityBaseDir}/
{applicationCertificate.keyStorePath}. The generated keystore will not be password protected.

You also need to make sure that the OPC UA client (which in this case is the FA3ST Service OPC UA asset connection)
knows and trusts the server certificate and vice versa.

For the client to trust the server you need to do one of these steps depending on the certificate of the server:

• Self-signed-certificate: Put server certificate in {securityBaseDir}/pki/trusted/certs

• CA Certificate: put the CA root certificate in {securityBaseDir}/pki/issuers/certs and the corresponding certifi-
cate revocation list (CRL) in {securityBaseDir}/pki/issuers/crl.

If you don’t have the server certificate at hand you can start FA3ST Service without providing/trusting the server cer-
tificate. On start-up FA3ST Service will try to connect to the server which will fail because the server certificate is
not trusted yet. After that you will find the relevant files at {securityBaseDir}/pki/rejected. Copy them to the
respective directories as described above. Once FA3ST Service tries to reconnect the connection should be established
successfully.

For the server to trust your client application certificate please refer to the documentation of your OPC UA server.

Authentication Certificate

Which authentication certificate is used is determined by a similar logic as for the application certificate besides that
this certificate is not auto-generated if not present:

• authenticationCertificate.keyStorePath if it is an absolute file path and the file exists (default: appli-
cation.p12)

• {securityBaseDir}/{authenticationCertificate.keyStorePath} if the file exists (default: ./
{authenticationCertificate.keyStorePath})

Value Provider

Table 14: Configuration properties of OPC UA AssetConnection Value
Provider.

Name Allowed
Value

Description Default
Value

arrayIn-
dex(optional)

String Index of the desired array element if the node is an array.Can be
multi-dimensional.

nodeId String NodeId of the the OPC UA node to read/write in ExpandedNodeId
format

2.6. AssetConnection 31

https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/
https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/

FA3ST Service

Listing 19: Example configuration section for OPC UA ValueProvider.

1 {
2 "nodeId": "nsu=com:example;s=foo",
3 "arrayIndex" : "[2]"
4 }

Operation Provider

Table 15: Configuration properties of OPC UA AssetConnection Opera-
tion Provider.

Name Allowed Value Description Default
Value

inputArgu-
mentMap-
ping(optional)

List List of mappings for input arguments between the idShort
of a SubmodelElement and an argument name

empty list

input-
Validation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for input arguments RE-
QUIRE_PRESENT_OR_DEFAULT

inoutput-
Validation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for inoutput arguments RE-
QUIRE_PRESENT_OR_DEFAULT

nodeId String NodeId of the the OPC UA node to read/write in Expand-
edNodeId format

out-
putArgu-
mentMap-
ping(optional)

List List of mappings for output arguments between the id-
Short of a SubmodelElement and an argument name

empty list

output-
Validation-
Mode(optional)

NONEREQUIRE_PRESENTREQUIRE_PRESENT_OR_DEFAULTValidation mode for ouput arguments RE-
QUIRE_PRESENT_OR_DEFAULT

parentN-
odeId(optional)

String NodeId of the OPC UA object in ExpandedNodeId for-
mat, in which the method is contained.When no parentN-
odeId is given here, the parent object of the method is
used.

Listing 20: Example configuration section for OPC UA Operation
Provider.

1 {
2 "nodeId": "nsu=com:example;s=foo",
3 "parentNodeId": "nsu=com:example;s=fooObject",
4 "inputArgumentMapping": [{
5 "idShort": "ExampleInputId",
6 "argumentName": "ExampleInput"
7 }],
8 "outputArgumentMapping": [{
9 "idShort": "ExampleOutputId",

10 "argumentName": "ExampleOutput"
(continues on next page)

32 Chapter 2. Features

https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/
https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/
https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/
https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/

FA3ST Service

(continued from previous page)

11 }]
12 }

Subscription Provider

Table 16: Configuration properties of OPC UA AssetConnection Sub-
scription Provider.

Name Allowed
Value

Description Default
Value

arrayIn-
dex(optional)

String Index of the desired array element if the node is an array.Can be
multi-dimensional.

interval long Interval to poll the server for changes (in ms)Currently not used 1000
nodeId String NodeId of the the OPC UA node to read/write in ExpandedNodeId

format

Listing 21: Example configuration section for OPC UA Subscription
Provider.

1 {
2 "nodeId": "nsu=com:example;s=foo",
3 "interval": 1000,
4 "arrayIndex" : "[2]"
5 }

Complete Example

Listing 22: Complete example configuration section for OPC UA Asset
Connection.

1 {
2 "@class": "de.fraunhofer.iosb.ilt.faaast.service.assetconnection.opcua.

→˓OpcUaAssetConnection",
3 "host": "opc.tcp://localhost:4840",
4 "securityPolicy": "None",
5 "securityMode" : "None",
6 "applicationCertificate": {
7 "keyStoreType": "PKCS12",
8 "keyStorePath": "C:\faaast\MyKeyStore.p12",
9 "keyStorePassword": "changeit",

10 "keyAlias": "app-cert",
11 "keyPassword": "changeit"
12 },
13 "authenticationCertificate": {
14 "keyStoreType": "PKCS12",
15 "keyStorePath": "C:\faaast\MyKeyStore.p12",
16 "keyStorePassword": "changeit",
17 "keyAlias": "auth-cert",

(continues on next page)

2.6. AssetConnection 33

https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/
https://reference.opcfoundation.org/v104/Core/docs/Part6/5.3.1/

FA3ST Service

(continued from previous page)

18 "keyPassword": "changeit"
19 },
20 "valueProviders": {
21 "[ModelRef](Submodel)urn:aas:id:example:submodel:1, (Property)Property1

→˓": {
22 "nodeId": "some.node.id.property.1"
23 },
24 "[ModelRef](Submodel)urn:aas:id:example:submodel:1, (Property)Property2

→˓": {
25 "nodeId": "some.node.id.property.2"
26 }
27 },
28 "operationProviders": {
29 "[ModelRef](Submodel)urn:aas:id:example:submodel:1, (Operation)Operation1

→˓": {
30 "nodeId": "some.node.id.operation.1"
31 }
32 },
33 "subscriptionProviders": {
34 "[ModelRef](Submodel)urn:aas:id:example:submodel:1, (Property)Property3

→˓": {
35 "nodeId": "some.node.id.property.3",
36 "interval": 1000
37 }
38 }
39 }

2.7 Persistence

The Persistence interface is responsible for storing the AAS model.

Each Persistence configuration supports at least the following configuration properties:

Table 17: Common configuration properties of for all Persistence imple-
mentations.

Name Al-
lowed
Value

Description De-
fault
Value

ini-
tialModel(optional)

String An Environment object containing the model to load initially.This can only
be set when used via code, not via configuration file.This has precedence over
initialModelFile when both are set.

ini-
tialMod-
elFile(optional)

String Path to a model file to load initially.

34 Chapter 2. Features

FA3ST Service

2.7.1 In-Memory

The In-Memory Persistence keeps the AAS model in the local memory. This means, that once FA3ST Service is stopped
or crashes, all changes made during runtime are lost.

Important: If you use In-Memory Persistence from code by setting the initialModel property, the passed instance
of Environment will be modified directly (as always the case in Java with pass-by-reference). If you do not want the
original instance to be modified by FA3ST Serivce, call DeepCopyHelper.deepCopy(...) with the Environment
to create a copy before passing it to FA3ST.

Configuration

In-Memory Persistence has no additional configuration properties.

Listing 23: Example configuration for In-Memory Persistence.

1 {
2 "persistence" : {
3 "@class" : "de.fraunhofer.iosb.ilt.faaast.service.persistence.memory.

→˓PersistenceInMemory",
4 "initialModel" : "{pathTo}/FAAAST-Service/misc/examples/model.json"
5 },
6 //...
7 }

2.7.2 File-based

The File-based Persistence stores the AAS model in a file according to the AAS specification. Therefore, changes are
stored permanently even when FA3ST Service is stopped or crashes.

Important: Each modification of the model results in writing the whole model to the file which might become a
performance issue for larger models.

Configuration

Table 18: Configuration properties of File-based Persistence.

Name Al-
lowed
Value

Description Default
Value

dataDir(optional)String Path where the model file created by the persistence should be saved. .
datafor-
mat(optional)

AASXJ-
SONXML

Data format to use when storing.Ignored when keepInitial is set to true. same as
initialModelFile

keepIni-
tial(optional)

Boolean If true, initialModelFile will not be modified but instead a copy will be
created in dataDir where the changes will be saved. If false, all changes will
be written directly to the initialModelFile.

true

2.7. Persistence 35

FA3ST Service

Listing 24: Example configuration for File-based Persistence.

1 {
2 "persistence" : {
3 "@class" : "de.fraunhofer.iosb.ilt.faaast.service.persistence.file.

→˓PersistenceFile",
4 "initialModelFile" : "{pathTo}/FAAAST-Service/misc/examples/model.json",
5 "dataDir": ".",
6 "keepInitial": true,
7 "dataformat": "XML"
8 },
9 //...

10 }

2.8 FileStorage

The FileStorage interface is responsible for managing auxiliary files like thumbnails or files referenced by the AAS
model.

2.8.1 In-Memory

The In-Memory FileStorage keeps all files stored in memory. This means, that once FA3ST Service is stopped or
crashes, all changes made during runtime are lost.

Configuration

In-Memory FileStorage does not support any configuration parameters.

Example

36 Chapter 2. Features

FA3ST Service

Listing 25: Example configuration for In-Memory FileStorage.

1 {
2 "fileStorage" : {
3 "@class" : "de.fraunhofer.iosb.ilt.faaast.service.filestorage.memory.

→˓FileStorageInMemory"
4 },
5 //...
6 }

2.8.2 FileSystem

The FileSystem-based FileStorage keeps all files stored in the file system of the local machine. Any change request,
such as changing a file, results in a change in the file system. Thus, changes are stored permanently.

Configuration

Table 19: Configuration properties of FileSystem FileStorage.

Name Allowed
Value

Description Default
Value

existingDataP-
ath(optional)

String A path/directory containing data that should be available on start-
up.This data will never be modified or deleted.

path(optional) String The path/directory to use for storing the files. .

Example

2.8. FileStorage 37

FA3ST Service

Listing 26: Example configuration for FileSystem FileStorage.

1 {
2 "fileStorage" : {
3 "@class" : "de.fraunhofer.iosb.ilt.faaast.service.filestorage.filesystem.

→˓FileStorageFilesystem",
4 "path": "./my/file/cache",
5 "existingDataPath": "./my/initial/data"
6 },
7 //...
8 }

2.9 MessageBus

The MessageBus interface is used for communication between different components, for example to synchronize be-
tween endpoints. Therefore, the MessageBus is primarily designed for internal use but as it might also be useful for
some applications and scenarios there might be implementations that expose the MessageBus to the outside world.

2.9.1 Events

The MessageBus works according to the publish/subscribe principle based on different types of events or event mes-
sages (which are subclasses of the abstract class EventMessage). Subscriptions are made to a kind of event, i.e. a
subclass of EventMessage or even EventMessage itself (to receive all events). When subscribing to a class, all events
of this class or any subclass are received.

This is the class hierarchy of available event classes/types

• EventMessage (abstract): Superclass for all events, payload: a Reference to the subject element

– AccessEventMessage (abstract): Superclass for all types of access-based events

∗ ReadEventMessage (abstract): Superclass for all types of read-events, triggered each time an element
is read via API

· ElementReadEventMessage: Triggered when a Referable is read via API, payload: the refer-
able (serialized according to the request, i.e. using the requested SerializationModifier)

· ValueReadEventMessage: Triggered when the value of an element is read via API, payload: the
element value

∗ ExecuteEventMessage (abstract): Superclass for all events related to executing operations

· OperationInvokeEventMessage: Triggered when an operation is invoked/started, payload: in-
put and inoutput parameters

· OperationFinishEventMessage: Triggered when an operation is finished, payload: output and
inoutput parameters

– ChangeEventMessage (abstract): Superclass for all types of changes

∗ ElementChangeEventMessage (abstract): Superclass for all types of structural changes, payload:
the updated element

· ElementCreateEventMessage: Triggered when an element is created

· ElementDeleteEventMessage: Triggered when an element is deleted

38 Chapter 2. Features

FA3ST Service

· ElementUpdateEventMessage: Triggered when an element is updated

· ValueChangeEventMessage: Triggered when the value of an element is updated, payload: old
value, new value

– ErrorEventMessage: Triggered when an error occurred, payload: message, error level (INFO, WARN,
ERROR)

2.9.2 Internal

This is the default implementation of the MessageBus interface which is implemented using Java method calls. There-
fore, it can only be accessed from code when FA3ST Service is used as an embedded library.

Configuration

This implementation does not offer any configuration properties.

Listing 27: Example configuration for Internal MessageBus.

1 {
2 "messageBus": {
3 "@class": "de.fraunhofer.iosb.ilt.faaast.service.messagebus.internal.

→˓MessageBusInternal"
4 },
5 //...
6 }

2.9.3 MQTT

This implementation of the MessageBus interface publishes messages via MQTT either by hosting its own MQTT
server or by using an externally hosted one.

Topics & Payload

Each message type is published on its own topic in the form of [topicPrefix]/[className], e.g. events/
ValueChangeEventMessage. The payload is a JSON serialization of the corresponding Java class with the following
base structure

Listing 28: JSON structure of serialized MessageBus events.

1 {
2 "@type": "[event type]",
3 "element": {
4 // [default JSON serialization of Reference]
5 },
6 // [event-specific properties]
7 }

An example ValueChangeEvent might look like this:

2.9. MessageBus 39

FA3ST Service

Listing 29: JSON serialization of an example ValueChangeEvent.

1 {
2 "@type": "ValueChangeEvent",
3 "element": {
4 "keys": [
5 {
6 "idType": "Iri",
7 "type": "Submodel",
8 "value": "http://example.org/submodel"
9 },

10 {
11 "idType": "IdShort",
12 "type": "Property",
13 "value": "property"
14 }
15] },
16 "oldValue": {
17 "modelType": "Property",
18 "dataType": "int",
19 "value": 0
20 },
21 "newValue": {
22 "modelType": "Property",
23 "dataType": "int",
24 "value": 1
25 }
26 }

For deserialization of events the class JsonEventDeserializer in module dataformat-json can be used.

40 Chapter 2. Features

FA3ST Service

Configuration

Table 20: Configuration properties of MQTT MessageBus.

Name Allowed
Value

Description Default
Value

clientCertifi-
cate(optional)

Certifi-
cateInfo

The client certificate to use. If not set, SSL will be disabled.

clien-
tId(optional)

String ClientId to use when connecting to the MQTT server. FAST
MQTT Mes-
sageBus

host(optional) String The host name of the MQTT server without prefix, e.g., 192.168.0.1. localhost
pass-
word(optional)

String Password used to connect to the MQTT server.

port(optional) Integer The port to use for TCP communication. 1883
serverCer-
tifi-
cate(optional)

Certifi-
cateInfo

The server certificate to use. If not set, SSL will be disabled.

sslPort(optional)Integer The port to use for secure TCP communication. 8883
sslWeb-
socket-
Port(optional)

Integer The port to use for secure websocket communication. 443

topicPre-
fix(optional)

String Prefix to use for the topic names. events/

useInter-
nalServer(optional)

Boolean If true, FA3ST Service starts its own MQTT server.If false, FA3ST
Service uses external MQTT server.

true

user-
name(optional)

String Username used to connect to the MQTT server.

users(optional) Map<String,
String>

Map of usernames and passwords of users that are allowed to connect
to the MQTT server.This is only used when useInternalServer is
true

empty list

useWeb-
socket(optional)

Boolean If true uses websocket, otherwise TCP. false

websocket-
Port(optional)

Integer The port to use for TCP communication 9001

Listing 30: Example configuration for MQTT MessageBus.

1 {
2 "messageBus": {
3 "@class": "de.fraunhofer.iosb.ilt.faaast.service.messagebus.mqtt.

→˓MessageBusMqtt",
4 "useInternalServer": true,
5 "port": 1883,
6 "sslPort": 8883,
7 "host": "localhost",
8 "websocketPort": 9001,
9 "sslWebsocketPort": 443,

10 "serverCertificate": {
11 "keyStoreType": "PKCS12",
12 "keyStorePath": "C:\faaast\MyKeyStore.p12",
13 "keyStorePassword": "changeit",

(continues on next page)

2.9. MessageBus 41

FA3ST Service

(continued from previous page)

14 "keyAlias": "server-key",
15 "keyPassword": "changeit"
16 },
17 "clientCertificate": {
18 "keyStoreType": "PKCS12",
19 "keyStorePath": "C:\faaast\MyKeyStore.p12",
20 "keyStorePassword": "changeit",
21 "keyAlias": "client-key",
22 "keyPassword": "changeit"
23 },
24 "users": {
25 "user1": "password1"
26 },
27 "username": "messagebus-user",
28 "password": "messagebus-password",
29 "clientId": "CustomClientId",
30 "topicPrefix": "faaast/events/"
31 },
32 //...
33 }

2.10 Release Notes

2.10.1 1.1.0-SNAPSHOT (current development version)

New Features & Major Changes

• General

– Loading AAS models from JSON now fails on unknown JSON properties

Internal changes & bugfixes

• General

– Added log message when starting to indicate that constraint validation is currently not supported

2.10.2 1.0.1

• General

– fixed some date-related unit tests that failed during daylight saving time at thereby prevented compilation
of project

42 Chapter 2. Features

FA3ST Service

2.10.3 1.0.0

Important: Version 1.0 is a major update and has breaking changes to all previous versions. When upgrading to v1.0
please make sure the AAS models and payload you use are compliant to AAS spec v3.0. Additionally, existing asset
connection configurations must be updated in the config file as the serialization format for references has changed in the
specificition, e.g., (Submodel)[IRI]http://example.org/foo,(Property)[ID_SHORT]bar in older configura-
tions new becomes (Submodel)http://example.org/foo, (Property)bar, i.e. the id type has been removed
and segments are not separated only by , but by , (comma followed by additional space).

New Features & Major Changes

• General

– Updated to AAS metamodel & API v3.0, i.e. older model file (compliant with v2.x, v3.xRCxx) can no
longer be loaded with FA3ST Service as-is but have be converted to v3.0

– Now requires Java 17+

– Replaced AAS model & de-/serialization library, now using AAS4J (previously Java Model and Java Seri-
alizer

– Default filename for model files changed to model.* (previously aasenvironment.*)

– Unified way to configure certificate information (See details). Affected components: HTTP Asset Connec-
tion, OPC UA Asset Connection, HTTP Endpoint, MQTT MessageBus

– Environment variables now use _ instead of . as a separator

– Validation - currently completely disabled as AAS4J does not yet offer validation support

∗ More fine-grained configuration of validation via configuration file

∗ Enabled validation for API calls creating or updating elements (basic validation enabled by default)

∗ Renamed CLI argument --no-modelValidation to --no-validation. It now enables any valida-
tion when used (overriding validation configuration in configuration file is present)

– Renamed CLI argument --emptyModel to --empty-model

• Endpoint

– HTTP

∗ Updated to AAS API specification v3.0.1

· HTTP no longer supported, only HTTPS

· all URLs are now prefixed with /api/v3.0/

∗ Added support for AASX serialization

∗ Added support for uploading, deleting and modifying of asset thumbnails and file attachments through
API

– OPC UA Endpoint

∗ Updated OPC UA Information model to AAS specification version 3.0. As there is no official mapping
of AAS v3.0 to OPC UA, the current mapping is proprietary

∗ Added support for configuring supported security policies (NONE, BASIC128RSA15, BASIC256,
BASIC256SHA256, AES128_SHA256_RSAOAEP, AES256_SHA256_RSAPSS) and authentication meth-
ods (Anonymous, UserName, Certificate)

• MessageBus

2.10. Release Notes 43

https://github.com/eclipse-aas4j/aas4j
https://github.com/admin-shell-io/java-model/
https://github.com/admin-shell-io/java-serializer
https://github.com/admin-shell-io/java-serializer
https://app.swaggerhub.com/apis/Plattform_i40/Entire-API-Collection/V3.0.1

FA3ST Service

– MQTT-based MessagBus now available that supports running both as embedded MQTT server or using
external one

• Asset Connection

– HTTP

∗ Now provides a way to explicitely trust server certificates, e.g. useful when servers are using a self-
signed certificate

• File-storage

– New file-storage interface provides functionality to store referenced files like thumbnails and files in Sub-
modelElements

– Implementations for filesystem- and memory-based storages

Internal changes & bugfixes

• General

– Fixed a ConcurrentModificationException that could occur when accessing a submodel with
subscription-based asset connection via HTTP endpoint

• HTTP Endpoint

– Now correctly uses base64URL-encoding for all HTTP requests (instead of base64-encoding for some)

– No longer leaks sensitive server information in HTTP response headers (such as server version of the HTTP
server library)

• Asset Connection

– OPC UA

∗ Unit tests no longer create temp files in source folders

• Starter

– Improved error logging

2.10.4 0.5.0

New Features & Major Changes

• Improved exception handling in CLI - upon error starter application should now correctly terminate with error
code 1

• OPC UA Endpoint

– Additional parameters available in configuration

• Docker container now runs using a non-root user

• Base persistence configuration updated

– changed initialModel from filename to AASEnvironment object

– added initialModelFile

– removed decoupleEnvironment property. To achieve previous behavior you need to manually decouple
the model by making a deep copy, e.g. via DeepCopyHelper.deepCopy(...)

• Asset Connection

– OPC UA

44 Chapter 2. Features

FA3ST Service

∗ Support mapping to specific element in (multi-dimensional) array/vector

∗ Additional parameters available in configuration: requestTimeout, acknowledgeTimeout, retries, se-
curityPolicy, securityMode, securityBaseDir, transportProfile, userTokenType, applicationCertificate-
File, applicationCertificatePassword, authenticationCertificateFile, authenticationCertificatePassword

Internal changes & bugfixes

• General

– Improved startup process & console ouput

• HTTP Endpoint

– DELETE requests now correctly return HTTP status code 204 No Content. The following URL patterns
are affected:

∗ /submodels/{submodelIdentifier}

∗ /submodels/{submodelIdentifier}/submodel/submodel-elements/{idShortPath}

∗ /shells/{aasIdentifier}/aas/submodels/{submodelIdentifier}/submodel/submodel-
elements/{idShortPath}

– Using not allowed HTTP methods not correctly returns 405 Method Not Allowed instead of 500
Internal Server Error

– Unsupported URLS (valid URLs with additional path elements) now correctly return 400 Bad Request
instead of 405 Method not allowed

– GET /shells/{aasIdentifier} now correctly returns status code 404 Not Foundwhen called with an existing
ID that is not an AAS (instead of 500 Internal Server Error)

• OPC UA Endpoint

– Major code refactoring

• Persistence

– Major code refactoring

• Asset Connection

– Fixed endless feedback loop when adding a subscription provider and value provider to the same element

– OPC UA

∗ fixed deserialization error when using operation provider with argument mappings

– HTTP

∗ subscription provider now only fires when then value has changed (before that it fired with any read)

• Miscellaneous

– Now using dockerfile to build docker container instead of jib maven plugin

2.10. Release Notes 45

FA3ST Service

2.10.5 0.4.0

New Features

• Improved logging (new CLI arguments -q, -v, -vv, -vvv, --loglevel-faaast, --loglevel-external)

Internal changes & bugfixes

• Asset Connection

– OPC UA

∗ Fixed problem converting DateTime values

• Fixed error related to JSONPath expressions that could occure in asset connections when using certain JSONPath
expressions

• Fixed error in reference helper with setting proper type of key elements when an identifiable and a independant
referable have the same idshort

• Removed dependencies on checks module which is only needed for codestyle check while compiling and therefore
not released on maven. This caused a missing dependency exception when using any FA3ST module within your
code.

2.10.6 0.3.0

New Features

• Asset Connection

– OPC UA

∗ Automatic reconnect upon connection loss

∗ Add ParentNodeId to OpcUaOperationProviderConfig

∗ Introduce mapping between IdShort and Argument Name in OpcUaOperationProviderConfig

– MQTT

∗ Automatic reconnect upon connection loss

– HTTP

∗ Now supports adding custom HTTP headers (on connection- & provier-level)

• Improved JavaDoc documentation

• Improved security through automatic vulnerabilities check before release

• Added example how to implement custom asset connection

Internal changes & bugfixes

• Dynamic loading of custom implementations (AssetConnection, Persistence, MessageBus, Endpoint and
Dataformat) now works as expected. NOTE: This requires package your custom implementation as a fat jar
and put it in the same location as the FA3ST starter jar.

• Streamlining dependencies

• Improved console output for file paths

• Added checks to ensure model paths provided are valid

• Asset Connection

46 Chapter 2. Features

FA3ST Service

– OPC UA

∗ Fix problem when InputArguments or OutputArguments node was not present for Operations

∗ Use ExpandedNodeId to parse NodeId Strings

– HTTP

∗ Fixed problem when using HttpAssetConnection configuration

• Development

– Enforce JavaDoc present at compile-time (through checkstyle)

– No longer release test module

– Create javadoc jar for parent POM

2.10.7 0.2.1

Bugfixes

• Asset connections could not be started with OperationProvider

• Returning wrong HTTP responses in some cases

2.10.8 0.2.0

New Features

• Persistence

– File-based persistence added

– Each persistence implementation can now be configured to use a given AAS model as initial value

• Asset Connection

– HTTP asset connection added

– Basic authentication (username & password) added for OPC UA, MQTT and HTTP

– Introducing protocol-agnostic library for handling different payload formats including extracting relevant
information from received messages as well as template-based formatting of outgoing messages (currently
only implemented for JSON)

• HTTP Endpoint

– API

∗ Submodel Interface calls now also available in combination with Asset Administration
Shell Interface, e.g. /shells/{aasIdentifier}/aas/submodels/{submodelIdentifier}/submodel

∗ Asset Administration Shell Serialization Interface now supported (at /serialization)

– Support for output modifier content=path

– CORS support, can be enabled by setting isCorsEnabled=true in config (default: false)

– now returns status code 405 Method Not Allowed if URL is correct but requested method is not supported

• Support for valueType=DateTime

• Support for Java 16

• Improved robustness (e.g. against common invalid user input or network issues)

2.10. Release Notes 47

FA3ST Service

• Improved console output (less verbose, always displays version info)

• Improved documentation

Internal changes & smaller bugfixes

• Validation now checks for unsupported datatypes

• Version info correctly displayed when started as docker container or via local build/debug

• Fixed potential crash when initializing value with empty string althtough that is not a valid value according to
the value type, e.g. int, double, etc. (empty string value is treated the same as null)

• Asset Connection

– Fixed error when using operation provider

– OPC UA

∗ subscription provider now syncs value upon initial connect instead of waiting for first value change on
server

– MQTT

∗ print warning upon connection loss

∗ properly handle invalid messages without crashing

• Added strict enforcement of valid output modifiers for each API call

• Dynamically allocate ports in unit tests

• Add builder classes for event messages & config classes

• Replace AASEnvironmentHelper with methods of EnvironmentSerialization

2.10.9 0.1.0

First release!

2.11 About the Project

The Reference Architecture of Industrie 4.0 (RAMI) presents the Asset Administration Shell (AAS) as the basis for
interoperability. AAS is the digital representation of an asset that is able to provide information about this asset, i.e.
information about properties, functionality, parameters, documentation, etc. The AAS operates as Digital Twin of
the asset it represents. Furthermore, the AAS covers all stages of the lifecycle of an asset starting in the develop-
ment phase, reaching the most importance in the operation phase and finally delivering valuable information for the
decline/decomposition phase.

To guarantee the interoperability of assets Industrie 4.0 defines an information metamodel for the AAS covering all
important aspects as type/instance concept, events, predefined data specification templates, security aspects, mapping
of data formats and many more. Moreover, interfaces and operations for a registry, a repository, publish and discovery
are specified. At first glance the evolving specification of the AAS seems pretty complex and a challenging task for
asset providers. To make things easier, FA3ST provides an implementation of several tools to allow for easy and fast
creation and management of AAS-compliant Digital Twins.

Important: FA3ST is currently in the process of becoming an Eclipse project which will be finalized after releasing
v1.0.0 here.

48 Chapter 2. Features

https://www.plattform-i40.de/SiteGlobals/IP/Forms/Listen/Downloads/EN/Downloads_Formular.html?cl2Categories_TechnologieAnwendungsbereich_name=Verwaltungsschale

FA3ST Service

2.11.1 Contact

faaast@iosb.fraunhofer.de

2.11.2 License

Distributed under the Apache 2.0 License. See LICENSE for more information.

Copyright (C) 2022 Fraunhofer Institut IOSB, Fraunhoferstr. 1, D 76131 Karlsruhe, Germany.

You should have received a copy of the Apache 2.0 License along with this program. If not, see https://www.apache.
org/licenses/LICENSE-2.0.html.

2.12 Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any
contributions are greatly appreciated.

If you have a suggestion for improvements, please fork the repo and create a pull request. You can also simply open an
issue. Don’t forget to rate the project! Thanks again!

1. Fork the Project

2. Create your Feature Branch (git checkout -b feature/AmazingFeature)

3. Commit your Changes (git commit -m 'Add some AmazingFeature')

4. Push to the Branch (git push origin feature/AmazingFeature)

5. Open a Pull Request

2.12.1 Code Formatting

The project uses spotless:check in the build cycle, which means the project only compiles if all code, *.pom and *.xml
files are formatted according to the project’s codestyle definitions (see details on spotless). You can automatically
format your code by running

mvn spotless:apply

Additionally, you can import the eclipse formatting rules defined in /codestyle into our IDE.

2.12.2 Third Party License

If you use additional dependencies please be sure that the licenses of these dependencies are compliant with our License.
If you are not sure which license your dependencies have, you can run

mvn license:aggregate-third-party-report

and check the generated report in the directory docs/third_party_licenses_report.html.

2.12. Contributing 49

https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/diffplug/spotless

FA3ST Service

2.12.3 Contributors

Name Github Account
Michael Jacoby mjacoby
Jens Müller JensMueller2709
Klaus Schick schick64
Tino Bischoff tbischoff2
Friedrich Volz fvolz

2.13 Recommended Documents/Links

• Asset Administration Shell Specifications
Quick-links To Different Versions & Reading Guide

• Details of the Asset Administration Shell - Part 1, Nov 2021
The publication states how companies can use the Asset Administration Shell to compile and structure informa-
tion. In this way all information can be shared as a package (set of files) with partners at several levels of the
value chain. It is not necessary to provide online access to this data from the very beginning.

• Details of the Asset Administration Shell - Part 2, Nov 2021
This part extends Part 1 and defines how information provided in the Asset Administration Shell (AAS) (e.g.
submodels or properties) can be accessed dynamically via Application Programming Interfaces (APIs).

• About OPC UA

• OPC UA Companion Specification OPC UA for Asset Administration Shell (AAS)

50 Chapter 2. Features

https://github.com/mjacoby
https://github.com/JensMueller2709
https://github.com/schick64
https://github.com/tbischoff2
https://github.com/fvolz
https://www.plattform-i40.de/IP/Redaktion/EN/Standardartikel/specification-administrationshell.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models/opc-ua-for-i4-asset-administration-shell/

	Implemented AAS Specifications
	Features
	Getting Started
	Installation
	Requirements
	Precompiled JAR
	Maven Dependency
	Gradle Dependency
	Build from Source

	Usage
	Command-Line Interface (CLI)
	Docker
	From Java Code

	Configuration
	Core Configuration
	Configuring Interface Implementations
	Using 3rd Party Interface Implementations
	Providing certificates in configuration
	Overriding Config Properties
	Via CLI
	Via Environment Variables

	Endpoint
	HTTP
	Configuration
	API
	Using HTTP PATCH
	Invoking Operations

	OPC UA
	Configuration Parameters
	Certificate Management
	OPC UA Client Libraries
	API
	Supported Functionality
	Not (yet) Supported Functionality

	AssetConnection
	OperationProvider Configuration
	Validation of operation arguments

	HTTP
	Supported Providers
	Configuration
	Connection-Level
	Value Provider
	Operation Provider
	Subscription Provider

	MQTT
	Supported Providers
	Configuration
	Connection-Level
	Value Provider
	Subscription Provider

	OPC UA
	Supported Providers
	Configuration
	Connection-Level
	Remarks on certificate management
	Application Certificate
	Authentication Certificate

	Value Provider
	Operation Provider
	Subscription Provider

	Complete Example

	Persistence
	In-Memory
	Configuration

	File-based
	Configuration

	FileStorage
	In-Memory
	Configuration
	Example

	FileSystem
	Configuration
	Example

	MessageBus
	Events
	Internal
	Configuration

	MQTT
	Topics & Payload
	Configuration

	Release Notes
	1.1.0-SNAPSHOT (current development version)
	1.0.1
	1.0.0
	0.5.0
	0.4.0
	0.3.0
	0.2.1
	0.2.0
	0.1.0

	About the Project
	Contact
	License

	Contributing
	Code Formatting
	Third Party License
	Contributors

	Recommended Documents/Links

